direct product, p-group, metabelian, nilpotent (class 3), monomial, rational
Aliases: C2×C2≀C22, C24⋊4D4, C24⋊6C23, C25⋊3C22, C23.5C24, 2+ 1+4⋊7C22, C23⋊(C2×D4), (C2×D4)⋊24D4, (C22×C4)⋊5D4, C23⋊C4⋊5C22, C22⋊C4⋊1C23, (C2×D4).39C23, C22≀C2⋊23C22, C22.25C22≀C2, (C2×2+ 1+4)⋊5C2, C22.39(C22×D4), (C22×D4).332C22, (C2×C4)⋊(C2×D4), (C2×C23⋊C4)⋊16C2, (C2×C22≀C2)⋊19C2, C2.60(C2×C22≀C2), (C2×C22⋊C4)⋊36C22, SmallGroup(128,1755)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C2≀C22
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=fbf=bcd, ece-1=cd=dc, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 1236 in 509 conjugacy classes, 108 normal (8 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C22⋊C4, C22⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, C24, C23⋊C4, C2×C22⋊C4, C2×C22⋊C4, C22≀C2, C22≀C2, C22×D4, C22×D4, C2×C4○D4, 2+ 1+4, 2+ 1+4, C25, C2×C23⋊C4, C2≀C22, C2×C22≀C2, C2×2+ 1+4, C2×C2≀C22
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, C2≀C22, C2×C22≀C2, C2×C2≀C22
(1 6)(2 5)(3 7)(4 8)(9 14)(10 15)(11 16)(12 13)
(1 11)(2 13)(3 14)(4 10)(5 12)(6 16)(7 9)(8 15)
(1 3)(2 5)(4 8)(6 7)(9 16)(10 15)(11 14)(12 13)
(1 7)(2 8)(3 6)(4 5)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 3)(2 4)(5 8)(6 7)(9 11)(14 16)
G:=sub<Sym(16)| (1,6)(2,5)(3,7)(4,8)(9,14)(10,15)(11,16)(12,13), (1,11)(2,13)(3,14)(4,10)(5,12)(6,16)(7,9)(8,15), (1,3)(2,5)(4,8)(6,7)(9,16)(10,15)(11,14)(12,13), (1,7)(2,8)(3,6)(4,5)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,3)(2,4)(5,8)(6,7)(9,11)(14,16)>;
G:=Group( (1,6)(2,5)(3,7)(4,8)(9,14)(10,15)(11,16)(12,13), (1,11)(2,13)(3,14)(4,10)(5,12)(6,16)(7,9)(8,15), (1,3)(2,5)(4,8)(6,7)(9,16)(10,15)(11,14)(12,13), (1,7)(2,8)(3,6)(4,5)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,3)(2,4)(5,8)(6,7)(9,11)(14,16) );
G=PermutationGroup([[(1,6),(2,5),(3,7),(4,8),(9,14),(10,15),(11,16),(12,13)], [(1,11),(2,13),(3,14),(4,10),(5,12),(6,16),(7,9),(8,15)], [(1,3),(2,5),(4,8),(6,7),(9,16),(10,15),(11,14),(12,13)], [(1,7),(2,8),(3,6),(4,5),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,3),(2,4),(5,8),(6,7),(9,11),(14,16)]])
G:=TransitiveGroup(16,245);
(1 5)(2 6)(3 7)(4 8)(9 16)(10 13)(11 14)(12 15)
(1 11)(2 10)(3 15)(4 16)(5 14)(6 13)(7 12)(8 9)
(2 7)(3 6)(10 12)(13 15)
(1 8)(2 7)(3 6)(4 5)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(9 11)(14 16)
G:=sub<Sym(16)| (1,5)(2,6)(3,7)(4,8)(9,16)(10,13)(11,14)(12,15), (1,11)(2,10)(3,15)(4,16)(5,14)(6,13)(7,12)(8,9), (2,7)(3,6)(10,12)(13,15), (1,8)(2,7)(3,6)(4,5)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (9,11)(14,16)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,16)(10,13)(11,14)(12,15), (1,11)(2,10)(3,15)(4,16)(5,14)(6,13)(7,12)(8,9), (2,7)(3,6)(10,12)(13,15), (1,8)(2,7)(3,6)(4,5)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (9,11)(14,16) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,16),(10,13),(11,14),(12,15)], [(1,11),(2,10),(3,15),(4,16),(5,14),(6,13),(7,12),(8,9)], [(2,7),(3,6),(10,12),(13,15)], [(1,8),(2,7),(3,6),(4,5),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(9,11),(14,16)]])
G:=TransitiveGroup(16,246);
(1 4)(2 3)(5 8)(6 7)(9 15)(10 16)(11 13)(12 14)
(1 16)(2 14)(3 12)(4 10)(5 13)(6 15)(7 9)(8 11)
(1 5)(2 6)(3 7)(4 8)(9 12)(10 11)(13 16)(14 15)
(1 2)(3 4)(5 6)(7 8)(9 11)(10 12)(13 15)(14 16)
(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 4)(2 3)(5 8)(6 7)(9 16)(10 15)(11 14)(12 13)
G:=sub<Sym(16)| (1,4)(2,3)(5,8)(6,7)(9,15)(10,16)(11,13)(12,14), (1,16)(2,14)(3,12)(4,10)(5,13)(6,15)(7,9)(8,11), (1,5)(2,6)(3,7)(4,8)(9,12)(10,11)(13,16)(14,15), (1,2)(3,4)(5,6)(7,8)(9,11)(10,12)(13,15)(14,16), (5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,8)(6,7)(9,16)(10,15)(11,14)(12,13)>;
G:=Group( (1,4)(2,3)(5,8)(6,7)(9,15)(10,16)(11,13)(12,14), (1,16)(2,14)(3,12)(4,10)(5,13)(6,15)(7,9)(8,11), (1,5)(2,6)(3,7)(4,8)(9,12)(10,11)(13,16)(14,15), (1,2)(3,4)(5,6)(7,8)(9,11)(10,12)(13,15)(14,16), (5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,8)(6,7)(9,16)(10,15)(11,14)(12,13) );
G=PermutationGroup([[(1,4),(2,3),(5,8),(6,7),(9,15),(10,16),(11,13),(12,14)], [(1,16),(2,14),(3,12),(4,10),(5,13),(6,15),(7,9),(8,11)], [(1,5),(2,6),(3,7),(4,8),(9,12),(10,11),(13,16),(14,15)], [(1,2),(3,4),(5,6),(7,8),(9,11),(10,12),(13,15),(14,16)], [(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,4),(2,3),(5,8),(6,7),(9,16),(10,15),(11,14),(12,13)]])
G:=TransitiveGroup(16,271);
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | ··· | 2S | 4A | ··· | 4F | 4G | ··· | 4L |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C2≀C22 |
kernel | C2×C2≀C22 | C2×C23⋊C4 | C2≀C22 | C2×C22≀C2 | C2×2+ 1+4 | C22×C4 | C2×D4 | C24 | C2 |
# reps | 1 | 3 | 8 | 3 | 1 | 3 | 6 | 3 | 4 |
Matrix representation of C2×C2≀C22 ►in GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 2 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | -1 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 2 |
0 | 0 | -1 | -1 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 2 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | -1 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,-1,0,0,0,1,0,0,0,0,1,1,0,-1,0,0,0,2,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,1,-1,0,0,1,0,1,-1,0,0,0,0,1,0,0,0,0,0,2,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,0,0,0,1,-1,0,0,0,0,2,0,0,-1],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,1,0,0,0,0,0,1,0,0,0,0,0,2,-1] >;
C2×C2≀C22 in GAP, Magma, Sage, TeX
C_2\times C_2\wr C_2^2
% in TeX
G:=Group("C2xC2wrC2^2");
// GroupNames label
G:=SmallGroup(128,1755);
// by ID
G=gap.SmallGroup(128,1755);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,718,2028]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=f*b*f=b*c*d,e*c*e^-1=c*d=d*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations